Telesurgery





Definition

Telesurgery, also called remote surgery, is performed by a surgeon at a site removed from the patient. Surgical tasks are directly performed by a robotic system controlled by the surgeon at the remote site. The word "telesurgery" is derived from the Greek words tele , meaning "far off," and cheirourgia , meaning "working by hand."


Description

In the early 2000s, several projects investigating the possibility and practicality of telesurgery were successful in performing complete surgical procedures on human patients from remote locations.

Preceding technologies

Telesurgery became a possibility with the advent of laparoscopic surgery in the late 1980s. Laparoscopy (also called minimally invasive surgery) is a surgical procedure in which a laparoscope (a thin lighted tube) and other instruments are inserted into the abdomen through small incisions. The internal operating field may then be visualized on a video monitor connected to the scope. In certain cases, the technique may be used in place of more invasive surgical procedures that require more extensive incisions and longer recovery times.

Computer-assisted surgery premiered in the mid-1990s; it was the next step toward the goal of remote surgery. The ZEUS Surgical System, developed in 1995 by Computer Motion, Inc., was approved by the Federal Drug Administration (FDA) in 2002 for use in general and laparoscopic surgeries with the patient and surgeon in the same room. ZEUS comprises three table-mounted robotic arms—one holding the AESOP endoscope positioner, which provides a view of the internal operating field, the others holding surgical instruments . The robotic arms are controlled by the surgeon, who sits at a console several meters away. Visualization of the operating field is controlled by voice activation, while the robotic arms are controlled by movements of the surgeon's hands and wrists.

Computer-assisted surgery has a number of advantages over traditional laparoscopic surgery. The computer interface provides a method for filtering out the normal hand tremors of the surgeon. Two- and three-dimensional visualization of the operating field is possible. The surgeon can perform a maneuver on the console, review it to be sure of its safety and efficacy, then instruct the remote device to perform the task. The surgeon is also seated in an ergonomic position with arms supported by arm rests for the duration of the operation.


Operation Lindbergh

While the concept of telesurgery seems like a logical technological progression—if a surgeon can perform a procedure from several meters away, why not from several thousand meters?—there is a major constraint that could lead to disastrous results during surgery, namely time delay. In the case of computer-assisted surgery, the computer console and remote surgical device are directly connected by several meters of cable; there is therefore virtually no delay in the transmission of data from the console to the surgical device back to the console. The surgeon therefore views his or her movements on the computer interface as they are happening. If the surgical system were removed to a more distant site, however, it would introduce a time delay. Visualization of the operating field could be milliseconds or even seconds behind the real-time manipulations of the surgeon. Studies showed that a delay of more than 150–200 milliseconds would be dangerous; satellite transmission, for example, would introduce a delay of more than 600 milliseconds.

In order to make telesurgery a reality, expert surgeons would need to work with the telecommunication industry to develop secure, reliable, high-speed transmission of data over large distances with imperceptible delays. In January 2000, such a project, labeled "Operation Lindbergh," began under the direction of Dr. Jacques Marescaux, director of the European Institute of Telesurgery; Moji Ghodoussi, project manager at Computer Motions, Inc.; and communication experts from France Télécom. Testing began on a prototype remote system (a modified version of the ZEUS Surgical System called ZEUS TS) in September 2000, with data being relayed between Paris and Strasbourg, France—a distance of approximately 625 mi (1000 km). Once an acceptable length of time delay was established, trials began in July 2001 between New York City and Strasbourg.

On September 7, 2001, Operation Lindbergh culminated in the first complete remote surgery on a human patient (a 68-year-old female), performed over a distance of 4300 mi (7000 km). The patient and surgical system were located in an operating room in Strasbourg, while the surgeon and remote console were situated in a high-rise building in downtown New York. A team of surgeons remained at the patient's side to step in if need arose. The procedure performed was a laparoscopic cholecystectomy (gall bladder removal), considered the standard of care in minimally invasive surgery. The established time delay during the surgery was 135 ms—remarkable considering that the data traveled a distance of more than 8600 mi (14,000 km) from the surgeon's console to the surgical system and back to the console. The patient left the hospital within 48 hours—a typical stay following laparoscopic cholecystectomy—and had an uneventful recovery.


Applications

Operation Lindbergh has paved the way for wide-ranging applications of telesurgery technology. On February 28, 2003, the first hospital-to-hospital teleroboticassisted surgery took place in Ontario, Canada, over a distance of 250 mi (400 km). Two surgeons worked together to perform a Nissen fundoplication (surgery to treat chronic acid reflux), with one situated at the patient's side and the other controlling a robotic surgical system from a remote hospital site. Such a scenario may eventually allow surgeons in rural areas to receive expert assistance during minimally invasive procedures.

Other potential applications of telesurgery include:

  • training new surgeons
  • assisting and training surgeons in developing countries
  • treating injured soldiers on or near the battlefield
  • performing surgical procedures in space
  • collaborating and mentoring during surgery by surgeons around the globe

Resources

PERIODICALS

Marescaux, J., et al. "Transatlantic Robotic Assisted Remote Telesurgery." Nature 413, no. 6854 (September 27, 2001): 379-80.

ORGANIZATIONS

Computer Motion, Inc. 130-B Cremona Dr., Goleta, CA 93117. (805) 968-9600. http://www.computermotion.com .

European Institute of Telesurgery. 1, Place de l'Hôpital, F 67091 STRASBOURG Cedex. +33(0)388119000. http://www.eits.org .

OTHER

Ghodoussi, Moji. "Project Lindbergh: World's First Transatlantic Telesurgery." Computer Motion, Inc., 2002 [cited April 13, 2003]. <www.computermotion.com/about/newsroom/features/projectlindbergh& x003E; .

"Operation Lindbergh: First Transatlantic Robot-Assisted Operation." WebSurg, 2003 [cited April 13, 2003]. http://www.websurg.com/lindbergh .

Rola, Monika. "Telerobotics Bridges Rural Health Care Divide." itbusiness.ca, March 4, 2003 [cited April 13, 2003]. <www.itbusiness.ca/index.asp?theaction=61&lid=1&sid 51570> .

"ZEUS Surgical System." Computer Motion, Inc., 2002 [cited April 13, 2003]. <www.computermotion.com/productsandsolutions/products/zeus> .


Stephanie Dionne Sherk

User Contributions:

Comment about this article, ask questions, or add new information about this topic:

CAPTCHA


Telesurgery forum